Semi-supervised learning : from Gaussian fields to Gaussian processes

نویسندگان

  • Xiaojin Zhu
  • John Lafferty
  • Zoubin Ghahramani
چکیده

We show that the Gaussian random fields and harmonic energy minimizing function framework for semi-supervised learning can be viewed in terms of Gaussian processes, with covariance matrices derived from the graph Laplacian. We derive hyperparameter learning with evidence maximization, and give an empirical study of various ways to parameterize the graph weights.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extensions of Gaussian Processes for Ranking: Semi-supervised and Active Learning

Unlabelled examples in supervised learning tasks can be optimally exploited using semi-supervised methods and active learning. We focus on ranking learning from pairwise instance preference to discuss these important extensions, semi-supervised learning and active learning, in the probabilistic framework of Gaussian processes. Numerical experiments demonstrate the capacities of these techniques.

متن کامل

Subset Selection for Gaussian Markov Random Fields

Given a Gaussian Markov random field, we consider the problem of selecting a subset of variables to observe which minimizes the total expected squared prediction error of the unobserved variables. We first show that finding an exact solution is NP-hard even for a restricted class of Gaussian Markov random fields, called Gaussian free fields, which arise in semi-supervised learning and computer ...

متن کامل

Semi-supervised learning with Gaussian fields

Gaussian fields (GF) have recently received considerable attention for dimension reduction and semi-supervised classification. This paper presents two contributions. First, we show how the GF framework can be used for regression tasks on high-dimensional data. We consider an active learning strategy based on entropy minimization and a maximum likelihood model selection method. Second, we show h...

متن کامل

Gaussian fields for semi-supervised regression and correspondence learning

Gaussian fields (GF) have recently received considerable attention for dimension reduction and semi-supervised classification. In this paper we show how the GF framework can be used for semi-supervised regression on high-dimensional data. We propose an active learning strategy based on entropy minimization and a maximum likelihood model selection method. Furthermore, we show how a recent genera...

متن کامل

Semi-supervised Learning via Gaussian Processes

We present a probabilistic approach to learning a Gaussian Process classifier in the presence of unlabeled data. Our approach involves a “null category noise model” (NCNM) inspired by ordered categorical noise models. The noise model reflects an assumption that the data density is lower between the class-conditional densities. We illustrate our approach on a toy problem and present comparative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015